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Nonparaxial propagation of ultrashort laser pulses in plasma channels

E. Esarey and W. P. Leemans
Center for Beam Physics, Ernest Orlando Lawrence Berkeley National Laboratory,

University of California, Berkeley, California 94720
~Received 28 May 1998!

The propagation characteristics of an ultrashort laser pulse in a preformed plasma channel are analyzed. The
plasma channel is assumed to be parabolic and unperturbed by the laser pulse. Solutions to the wave equation
beyond the paraxial approximation are derived that include finite pulse length effects and group velocity
dispersion. When the laser pulse is mismatched within the channel, betatron oscillations arise in the laser pulse
envelope. A finite pulse length leads to a spread in the laser wave number and consequently a spread in
betatron wave number. This results in phase mixing and damping of the betatron oscillation. The damping
distance characterizing the phase mixing of the betatron oscillation is derived, as is the dispersion distance
characterizing the longitudinal spreading of the pulse.@S1063-651X~99!04301-9#

PACS number~s!: 52.40.Nk, 52.40.Fd, 42.79.Gn, 42.65.Re
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I. INTRODUCTION

Optical guiding of intense laser pulses in plasma chann
@1# is beneficial to a variety of applications, includin
plasma-based accelerators@2#, harmonics generation@3,4#,
x-ray lasers@5,6#, and advanced laser-fusion schemes@7–9#.
In vacuum, a laser pulse will diffractively expand after
distance on the order of a Rayleigh lengthZR5pr 0

2/l,
wherer 0 is the laser spot radius at focus,l52pc/v0 is the
laser wavelength, andv0 is the laser frequency. High inten
sity requires a tight focus~small r 0! and, hence, a sma
Rayleigh length, e.g.,ZR.300mm for r 0510mm and l
51 mm. A preformed plasma density channel can prev
pulse diffraction. Specifically, a plasma channel with a ra
ally parabolic density profile of the formn(r )5n0

1Dnr2/r 0
2 can guide a laser pulse of spot sizer 0 provided

the channel depthDn satisfies Dn5Dnc , where Dnc

51/pr er 0
2 is the critical channel depth andr e5e2/mec

2 is
the classical electron radius@10,11#. In practical units,

Dnc~cm23!.1.1331020/r 0
2~mm!, ~1!

e.g., Dn.1018 cm23 for r 0510mm. Plasma density chan
nels have been created in the laboratory by a variety of m
ods: ~i! Passing a long laser pulse through an optic to c
ate a line focus in a gas, which ionizes and heats the
creating a radially expanding hydrodynamic shock@12–18#,
~ii ! using a slow capillary discharge to control the plas
profile @19–21#, and ~iii ! using the ponderomotive force o
an intense, relativistically self-guided laser pulse in a plas
which creates a channel in its wake@22–31#. These methods
have been used to guide short pulses, with intensities as
as 1016 W/cm2, over distances on the order of 20ZR
2100ZR @12–24#. In all experiments published to date@12–
24#, the laser pulses guided within the preformed plas
channels were in the regimea0

2!1 andP/Pc!1, wherea0
2

57.2310219 l2 (mm)I (W/cm2), I is the laser intensity,
P (GW)521.5(a0r 0 /l)2 is the laser power,Pc (GW)
517(lp /l)2 is the critical power for relativistic self-
focusing,lp52pc/vp0 is the plasma wavelength, andvp0
5(4pn0e2/me)

1/2 is the electron plasma frequency.
PRE 591063-651X/99/59~1!/1082~14!/$15.00
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In this paper, the propagation of ultrashort pulses in lo
plasma channels is examined in the low intensitya0

2!1, low
powerP/Pc!1 limits. Solutions to the linear wave equatio
are derived beyond the paraxial limit, i.e., finite pulse leng
and group velocity dispersion effects are retained. A form
ism is developed that allows the laser field profile to be c
culated in three dimensions to arbitrarily high order in t
parameterl/L. It is found that betatron oscillations in th
laser pulse envelope, which occur when the pulse is
matched within the channel, damp due to phase mixing w
a characteristic damping length given byZb.(pL/l)ZR
5(pr 0 /l)2L. In addition, the characteristic scale length f
dispersive spreading of the laser pulse length within a ch
nel is found to be given byZD.(ggL/r 0)2ZR , where gg

5(12bg
2)21/2 andvg5cbg is the group velocity of the lase

pulse within the channel, i.e.,bg.12vp0
2 /2v222c2/v0

2r 0
2,

assuming 12bg!1. These effects are important for u
trashort laser pulses, and high-power~>1 TW! sources of
ultrashort~<20 fs! pulses are readily available@32#.

Solutions to the paraxial wave equation describing
propagation of laser pulses in underdense (v0@vp0) plasma
channels have been analyzed in detail@1#. Analysis of the
paraxial wave equation with a parabolic density channe
the form n(r )5n01Dnr2/r 0

2 indicates that the normalize
spot sizeR5r s /r 0 of a long, axially uniform laser beam
evolves via@1,33#

d2R

dz2
5

1

ZR
2R3 S 12

P

Pc
2

Dn

Dnc
R4D , ~2!

where ZR5pr 0
2/l, Dnc51/pr er 0

2 is the critical channel
depth,P is the laser power, andPc.17(lp

2/l2) GW is the
critical power for relativistic self-focusing@1,34–38#. Note
that Pc.19 TW for n0.1018 cm23 (lp.33mm) and l
51 mm. The first, second, and third terms on the right of E
~2! represent the effects of vacuum diffraction, relativis
focusing, and channel focusing, respectively. In deriving E
~2!, a Gaussian radial laser field profile was assumed, i.e
normalized laser intensity profile of the form
1082 ©1999 The American Physical Society
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uau25a0
2~r 0

2/r s
2!exp~22r 2/r s

2!, ~3!

where a5eA/mec
2 is the normalized vector potentia

The parametera0 is related to the laser power and pe
intensity I at the focal spot r s5r 0 by a0

257.2
310219l2(mm)I (W/cm2) and P (GW)521.5(a0

2r 0
2/l2),

assuming linear polarization. Furthermore, the derivation
Eq. ~2! assumes a long laser pulseL@lp and neglects pon
deromotive and wake-field effects@1,10,11,33,35,37,38#, i.e.,
the parabolic density profile is assumed to be unaffected
the laser pulse. Other channel profiles, e.g., square or ho
channels@39,40#, are not considered in this paper. In th
limits Dn/Dnc!1 and P/Pc!1, the usual solution for
vacuum diffraction is recovered from Eq.~2!, i.e., r s

5r 0(11z2/ZR
2)1/2, assuming the initial conditionsr s5r 0

anddrs /dz50 at z50.
Equation ~2! indicates that the condition for matche

beam propagation~propagation with a constant spot sizer s
5r 0! is @1,33,38#

Dn/Dnc512P/Pc . ~4!

In the absence of a channel, guiding requiresP5Pc , which
is the condition of relativistic self-guiding. As is discussed
detail in Refs.@1, 11, 33, 36#, relativistic self-guiding is sub-
ject to leading-edge erosion and self-modulation instabilit
and is ineffective in preventing the diffraction of sho
pulses, i.e., pulse lengthsL&lp . For low powers,P!Pc ,
matched-beam propagation can be achieved by a cha
with Dn5Dnc . Matched-beam propagation requires, in a
dition to Eq.~4!, that the beam be injected into the chann
with a spot sizer s satisfyingdrs /dz50 and r s5r 0 at the
channel entrance, where thez axis corresponds to the chann
axis.

In general, the beam will not be perfectly matched with
the channel, i.e., the laser envelope will undergo beta
oscillations. The solution to Eq.~2! for the initial (z50)
conditionsdrs /dz50 andr s5r i is @1,33#

r s
2

r i
2

5
Dncr 0

4

2Dnri
4 F12

P

Pc
1

Dnri
4

Dncr 0
4

2S 12
P

Pc
2

Dnri
4

Dncr 0
4D cos~kbz!G , ~5!

where kb5(2/ZR)(Dn/Dnc)
1/2 is the betatron wave num

ber andr i is the injected spot size. ForP,Pc and Dn.0,
the spot size oscillates betweenr s

25r i
2 and r s

2

5(12P/Pc)Dncr 0
4/Dnri

2 with an oscillation periodlb

52p/kb5pZR(Dnc /Dn)1/2. A matched beam withr s5r i
5r 0 requiresP5PM , wherePM5Pc(12Dn/Dnc). Notice
that for r i5r 0 and kb

2z2!1, Eq. ~5! reduces to r s
2/r 0

2

511(12P/Pc2Dn/Dnc)z
2/ZR

2. This indicates that the
beam will initially focus forP.PM or diffract for P,PM
with an effective Rayleigh length of ZR(12P/Pc
2Dn/Dnc)

21/2.
Equations~2!–~5! are solutions to the paraxial wave equ

tion describing the evolution of long laser beams. Howev
some effects of a finite pulse lengthL can be ascertaine
from Eqs.~2!–~5! in the limit P/Pc!1. A finite pulse length
f

y
w

s,

nel
-
l

n

r,

will introduce a spread in laser wave numbersk5k01dk,
where k0 is the central wave number andudku.2/L!k0 .
Notice that the condition for guiding a matched pulse w
r i5r 0 is Dn5Dnc , which is independent of the wave num
ber. For a slight mismatch,r i5r 01dr 0 with dr 0 /r 0!1, the
solution to Eq.~2! is r s.r 01dr 0 coskbz. Notice that the
betatron wave numberkb52/ZR54/kr0

2 depends on thek
spectrum of the laser pulse. A spread ink will lead to a
spread inkb , i.e., different frequencies will undergo betatro
oscillations in the channel with different periods. This w
lead to phase-mixing and damping of the betatron osci
tions. Roughly, damping of the betatron oscillations will o
cur after a distanceZb given by dkbZb.p/2, wheredkb
5kbdk/k0 . This gives Zb.(p/8)k0LZR . A more accu-
rate estimate is given by averaging the betatron orbitdr
5dr 0 coskbz over the k spectrum. A laser pulse with
an axial profile of the form a;exp@2(z2ct)2/L2#
has a k spectrum f ;exp(2dk2L2/4). Hence, ^dr &
5*ddk fdr .dr 0 cos(kb0z)exp(2kb0

2 z2/k0
2L2), which implies

Zb5k0L/kb05k0LZR0/2, where ZR05k0r 0
2/2. This result

holds providedL,ZR . Damping of the betatron oscillation
in the laser spot has been observed in nonlinear fluid si
lations that model the experiments of Ref.@21#.

The remainder of this paper is organized as follows. S
tion II presents an analysis of the linear wave equation
cluding finite pulse length and group velocity dispersion
fects. Solutions for a matched, finite length pulse within
channel, including second-order dispersion, are derived
Sec. III. In Sec. IV, mismatched pulse propagation is a
lyzed, with ~Sec. IV A! and without~Sec. IV B! the effects
of dispersion. Nonlinear effects, in particular the hos
modulation instability, are discussed in Sec. V. Section
presents a discussion of the results. Three Appendixes
also included that discuss the plasma source term for
linear wave equation~Appendix A!, the evolution of ul-
trashort laser pulses in the absence of a plasma cha
~Appendix B!, and a generalization of the results to inclu
high-order modes~Appendix C!.

II. ANALYSIS OF WAVE EQUATION

The propagation of an ultrashort laser pulse in a p
formed plasma channel will be considered. A parabolic d
sity channel is assumed with an electron density profile
the form n(r )5n01Dnr2/r 0

2, where Dn is the channel
depth andr 0 is the channel radius. Propagation is conside
in the limits of low powerP/Pc!1 and low intensitya0

2

!1, such that nonlinear effects~e.g., relativistic self-
focusing! can be neglected and the density channel can
assumed unaffected by the laser pulse. It is convenient to
the normalized vector potentiala5eA/mec

2 with “•a50.
The linear wave equation for the transverse componentax of
the laser field is

S“22
1

c2

]2

]t2D ax5kp
2~r !ax , ~6!

where kp
2(r )5kp0

2 (11Dnr2/n0r 0
2), kp05vp0 /c, and vp0

2

54pn0e2/me . Here, the source termSx5kp
2(r )ax repre-

sents the normalized transverse plasma current to first o
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in uaxu. Derivation of the plasma source term, along w
high-order corrections, is discussed in Appendix A.

In terms of the independent variablesz5z2bg0ct andz,
the wave equation becomes

F“'
2 12

]2

]z]z
1~12bg0

2 !
]2

]z2
1

]2

]z2Gax5kp
2~r !ax , ~7!

wherebg05vg0 /c andvg0 is the linear pulse group velocity
as is defined below. Introducing the slowly varying field e
velope â, whereax5â exp(ik0z2iv0t)1c.c., v0 is the cen-
tral frequency of the pulse,k0 is the central wave number
and c.c. denotes the complex conjugate, the wave equa
becomes

F“'
2 12S ik01

]

]z D ]

]z
1~12bg0

2 !
]2

]z2
1

]2

]z2G â

5@kp
2~r !2k0

2~bp0
2 21!#â, ~8!

wherebp05v0 /ck0 andbp0bg051 is assumed.
For a short pulse of lengthL propagating in a plasma

channel, the operators on the left side of the wave eq
tion, Eq. ~8!, scale as follows: “';1/r 0 , ]/]z;1/L,
]/]z;1/ZR0 , and 12bg0

2 ;vp0
2 /v0

214/k0
2r 0

2, where ZR0

5k0r 0
2/2 is the Rayleigh length. The last term on the left

Eq. ~8!, ]2/]z2, is typically small and will be neglected in
the following analysis. This is valid provided~i! u]2â/]z2u
!2u]2â/]z]zu, which impliesL!2ZR0 , and ~ii ! u]2â/]z2u
!(12bg0

2 )u]2â/]z2u, which implies L2/r 0
2!(11kp0

2 r 0
2/4).

The 2]2/]z]z and (12bg0
2 )]2/]z2 terms in Eq.~8! repre-

sent corrections to the paraxial wave equation that acco
for short pulse and group velocity dispersion effects.

Equation~8! can be solved by taking a Fourier transfor
with respect toz @41#. Neglecting the]2/]z2 term gives

F“'
2 12i ~k01dk!

]

]zG âk

5@kp
2~r !2k0

2~bp0
2 21!1dk2~12bg0

2 !#âk , ~9!

where

âk5
1

A2p
E

2`

`

dz exp~2 idkz!â~z!. ~10!

Notice that Eq.~9! has the form of a paraxial wave equatio
Hence, solutions forâk can readily be found. For example
the lowest-order Gaussian mode is given by

âk5bk exp@ iu2~12 ia!r 2/r s
2#, ~11!

where the quantitiesbk(k,z), u(k,z), a(k,z), and r s(k,z),
which represent the amplitude, phase shift, curvature,
spot size of the field ink space, respectively, satisfy

bk5bk0r s /r 0 , ~12a!

a5~krs/2!]r s /]z, ~12b!
-

on

a-

f

nt

d

]2r s

]z2
5

4

k2r s
3 S 12

Dnrs
4

Dncr 0
4D , ~12c!

]u

]z
52

2

k S 1

r s
2

2
1

r 0
2D 2

dk2

2k
~12bg0

2 !, ~12d!

where k5k01dk, Dnc51/pr er 0
2 is the critical channel

depth, and bk0 is the initial k spectrum of the lase
pulse atz50. Note that for an initial Gaussian axial puls
profile of the form b05a0 exp(2z2/L2), bk0
5a0(L/&)exp(2dk2L2/4). In deriving Eq.~12d!, the central
pulse frequency and wave number are assumed to satis

v0
2/c22k0

25kp0
2 14/r 0

2, ~13!

which implies

bg0
2 5bp0

22512vp0
2 /v0

224c2/v0
2r 0

2. ~14!

This is the correct group velocity for a Gaussian laser pu
propagating at the matched spot sizer s5r 0 in a channel with
Dn5Dnc , as demonstrated in Sec. III. Furthermore, no
that in the limit of a long laser beam, Eqs.~12a!–~12d! re-
duce to the usual paraxial solutions whendk50.

Equation ~12c! describes the evolution of the spot siz
r s(z) for a givenk5k01dk mode of the laser field. For a
given k, r s undergoes ‘‘betatron’’ oscillations in the densi
channel. For example, the solutions to Eqs.~12b!–~12d! with
the initial ~at z50! conditionsa50, u50, ]r s /]z50, and
r s5r i are given by

a52
1

2 S r i
2

r M
2

2
r M

2

r i
2 D sin~kbz!, ~15a!

r s
25

r i
2

2 F S 11
r M

4

r i
4 D 1S 12

r M
4

r i
4 D cos~kbz!G , ~15b!

u5F r M
2

r 0
2

2
dk2r M

2

4
~12bg0

2 !G z

ZRM

2tan21F r M
2

r i
2

tanS z

ZRM
D G , ~15c!

where kb52/ZRM is the betatron wave number,ZRM

5krM
2 /2 is the matched Rayleigh length, andr M

5(r 0
4Dnc /Dn)1/4 is the matched spot size~r M5r 0 for Dn

5Dnc!. The normalized spot sizer s /r 0 in the paraxial limit,
i.e., obtained from Eq.~15b! with dk50 andDn5Dnc , is
plotted in Fig. 1 versusz/ZR for the matched caser i5r 0
~solid curve!, and two mismatched cases:r i51.5r 0
~dashed curve! and r i50.5r 0 ~dotted curve!.

The solution for the laser envelope is given by
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â~r ,z,z!5
1

A2p
E

2`

`

ddk
r 0

r s
bk0

3expF idkz1 iu2~12 ia!
r 2

r s
2G , ~16!

wherea(k,z), r s(k,z), andu(k,z) are given by Eqs.~15a!–
~15c!, andb0k is the Fourier transform of the initial (z50)
axial profile of the laser pulseb0(z). Strictly speaking,b0k
should not contain a finite amplitude atdk52k0 @41#, so as
to avoid singularities that may arise in the integrand of E
~16!. Note that a finite component atdk52k0 (k50) cor-
responds to a contribution to the field envelopeâ that is
spatially uniform inz. An axially uniform contribution to the
field envelope is not physical for a realistic ultrashort la
pulse. Approximate solutions to Eq.~16! can be found by
expanding the integrand forudku/k0!1 @41#. Solutions to
Eqs. ~11!–~12! and ~16! for the case of vacuum diffraction
(Dn50) are discussed in Appendix B. Generalization
Eqs. ~11!–~16! to describe high-order Laguerre-Gaussi
modes is discussed in Appendix C.

Notice that the condition for a matched beam,r s5r 0 for
Dn5Dnc , is independent of wave numberk, sinceDnc is
independent ofk. The betatron wave number, however, do
depend onk, i.e., kb54/krM

2 . Hence, for a short pulse, th
spread ink implies a spread inkb which leads to phase
mixing and a subsequent damping of the betatron osc
tions.

III. MATCHED PULSE

Since the condition for guiding a pulse with a consta
radiusr s5r 0 for Dn5Dnc is independent of wave numbe
matched pulse solutions are possible. Consider a matc
pulse withDn5Dnc andr s5r 0 . Equations~12!–~15! imply
bk5bk0 , a50, andu52(dk2/2k)(12bg0

2 )z. Hence,

âk5bk0 exp@2r 2/r 0
22~dk2/2k!~12bg0

2 !z#. ~17!

Here, the last term on the right, proportional todk2z/k, rep-
resents the effects of group velocity dispersion. For
Gaussian axial pulse profile,bk05a0(L/&)exp(2dk2L2/4)
and udku;1/L!k0 . Hence, in the dispersion term the a

FIG. 1. Normalized spot sizer s /r 0 in the paraxial limit (dk
50), Eq.~15b!, vs z/ZR for r i5r 0 ~solid curve!, r i51.5r 0 ~dashed
curve!, andr i50.5r 0 ~dotted curve!, with Dn5Dnc .
.

r

f

s

-

t

ed

a

proximation dk2z/k.dk2z/k0 can be made~i.e., only
second-order dispersion effects are retained!. Using this ap-
proximation, and assuming a Gaussian axial profile,
Fourier inverse transform of Eq.~17! is given by

â5a0~11h0
2!21/4

3expF2
r 2

r 0
2

2
z2

L2

~12 ih0!

~11h0
2!

2
i

2
tan21 h0G , ~18!

whereh05z/ZD0 and

ZD05
k0L2

2~12bg0
2 !

5
~pL/l0!2ZR0

~11kp0
2 r 0

2/4!
~19!

is the dispersion length, wherel052pc/v0 . Dispersion
causes a broadening of the pulse length, i.e., the effec
pulse length is given by

Le05L~11z2/ZD0
2 !1/2. ~20!

The normalized pulse intensity is given by

uâu25a0
2~L/Le0!exp~22r 2/r 0

222z2/Le0
2 !. ~21!

The normalized intensityuâu2/a0
2 versusz/L is plotted in Fig.

2 along thez axis (r 50) for z50 ~solid curve!, z5ZD0
~dashed curved!, andz52ZD0 ~dotted curve!. Notice that the
axial pulse centroid, corresponding to the position of t
peak intensity, is given byz50. Hence, the group velocity o
the pulse centroidvgc is correctly given byvgc

2 /c25bg0
2

512vp0
2 /v0

224c2/v0
2r 0

2.

IV. MISMATCHED PULSE

Consider the case of a pulse injected into a channelDn
5Dnc with a slightly mismatched radius, i.e.,drs /dz50
andr s5r 01dr 0 at z50 with dr 0

2/r 0
2!1. To leading order in

dr 0 /r 0 , Eqs.~12! and ~15! indicate

a.22
dr 0

r 0
sin~kbz!, ~22a!

FIG. 2. Normalized intensityuâu2/a0
2, Eq. ~21!, vs z/L along the

axis (r 50) for a matched pulse atz50 ~solid curve!, z5ZD0

~dashed curve!, andz52ZD0 ~dotted curve!.
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r s.r 0F11
dr 0

r 0
cos~kbz!G , ~22b!

bk.bk0F12
dr 0

r 0
cos~kbz!G , ~22c!

u.
dr 0

r 0
sin~kbz!2

dk2

2k
~12bg0

2 !z. ~22d!

Thus, to leading order indr 0 /r 0 ,

âk.bk0F12
dr 0

r 0
S 12

2r 2

r 0
2 Dexp~2 ikbz!G

3expF2
r 2

r 0
22

idk2

2k
~12bg0

2 !zG . ~23!

This can be written asâk5âk01dâk , where âk0 is the
matched fundamental~m50 andp50! mode anddâk ~the
term proportional todr 0 /r 0! is the matched first-order~m
51 andp50! Laguerre-Gaussian mode, as discussed in
pendix C.

A. No dispersion

First consider the limit in which second-order group v
locity dispersion effects are neglected, i.e., the term prop
tional todk2z/k is neglected in the exponent of Eq.~23!. To
evaluate Eq.~23!, kb is expanded to first order inudku/k0 ,
assumingdk2/k0

2!1, i.e., kb.kb0(12dk/k0), where kb0

52/ZR0 and ZR05k0r 0
2/2. The Fourier inverse transform o

Eq. ~23!, including terms in the exponent to first order
dk/k0 , is given byâ5â01dâ, where

â05b0~z!exp~2r 2/r 0
2! ~24!

is the matched pulse solution in the absence of second-o
group velocity dispersion, e.g., given by Eq.~18! in the limit
ZD0

2150. The perturbation to the pulse envelope due to
mismatch is given by

dâ52
dr 0

r 0
b0~z1!S 12

2r 2

r 0
2 D expS 2

r 2

r 0
2

2 ikb0zD ,

~25!

where z15z1kb0z/k0 . Here, b0(z) is the initial axial
field profile, which for a Gaussian is given byb0(z)
5a0 exp(2z2/L2). The fundamental fieldâ0 , Eq. ~24!, and
the normalized perturbed fieldâ15dâ/(dr 0 /r 0), given by
Eq. ~25!, versusz/L and r /r 0 are shown in Figs. 3~a! and
3~b!, respectively, atz55pZR0 for a Gaussian axial profile
with L/l055. In Fig. 3, note that the centroid of the pe
turbed field lags behind the fundamental by an amo
Dz/L52kb0z/k0L521.

The centroid of the perturbed fielddâ ~given byz150! is
shifted behind that of the unperturbed fieldâ0 ~given by z
50! by an amountDz5z2z152kb0z/k0 . This indicates
that the group velocityvg15cbg1 associated with the cen
troid of the perturbed field is given by
-

-
r-

er

e

t

bg15bg0~11kb0 /k0!21.12vp0
2 /2v0

226c2/v0
2r 0

2,
~26!

which is less than that of the unperturbed field by an amo
bg02bg1.4/k0

2r 0
2, wherevp0

2 /v0
2!1 andc2/v0

2r 0
2!1 have

been assumed. The perturbed field, Eq.~25!, can be inter-
preted as a matched first-order (m51,p50) Laguerre-
Gaussian mode in the absence of dispersion~see Appendix
C!. The effective axial wave-number shiftdkz associated
with a Laguerre-Gaussian mode is given bydkz /k0

.22(2m1p11)c2/v0
2r 0

2, which is agreement with the
third term on the left of Eq.~14! for (m50,p50) and of Eq.
~26! for (m51,p50).

To analyze the behavior of the pulse radius, consider
local intensity-weighted mean-squared radius^r 2& defined
by

^r 2&5
*0

`dr r 3uâu2

*0
`dr r uâu2

. ~27!

To first order indr 0 /r 0 , the normalized pulse intensity i
given by uâu25 Î 01d Î with Î 05uâ0u25b0

2(z)exp(22r2/r0
2)

and d Î 5â0dâ* 1â0* dâ, where the asterisk signifies th
complex conjugate, i.e.,

FIG. 3. Surface plots of~a! fundamental fieldâ0 , Eq. ~24!, and
~b! normalized perturbed fieldâ15dâ/(dr 0 /r 0), given by Eq.~25!,
vs z/L and r /r 0 at z55pZR0 for a Gaussian axial profile with
L/l055.
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d Î 522b0~z!b0~z1!
dr 0

r 0
S 12

2r 2

r 0
2 D

3expS 2
2r 2

r 0
2 D cos~kb0z!. ~28!

Hence, to first order indr 0 /r 0 ,

E
0

`

dr r uâu25
r 0

2

4
b0

2~z!, ~29!

which indicates that the perturbation does not alter the p
power. Furthermore,

^r 2&5
r 0

2

2 F112
dr 0

r 0

b0~z1!

b0~z!
cos~kb0z!G , ~30!

which for a Gaussian axial profile,b0(z)5a0 exp(2z2/L2),
gives

^r 2&5
r 0

2

2 F112
dr 0

r 0
DRL~z,z!G , ~31!

where

DRL5expS 2
2zz

ZbL
2

z2

Zb
2 D cos~kb0z! ~32!

is the normalized local intensity-weighted RMS betatron
dius. Asymptotically, for a fixedz and z@Zb , the betatron
oscillation damps via exp(2z2/Zb

2), where

Zb5~k0L/2!ZR0.~pL/l0!ZR0 ~33!

is the betatron damping distance. Furthermore, note
there is a front-to-back asymmetry in the betatron oscillati
i.e., the magnitude of the betatron oscillation at the front
the pulse (z5L/2) is smaller than it is at the back of th
pulse (z52L/2). The normalized local RMS radius of th
betatron oscillationDRL(z,z), Eq. ~32!, is plotted in Figs.
4~a! and 4~b! versusz/ZR0 for the parametersl051 mm, L
55 mm, and r 0510mm ~Zb55pZR0 and ZR05310mm!.
Figure 4~a! showsDRL(z,z) at the pulse centerz50 ~solid
curve! and the front of the pulsez5L ~dashed curve!,
whereas Fig. 4~b! showsDRL(z) at the pulse centerz50
~solid curve! and the back of the pulsez52L ~dotted
curve!. Note that DRL(z) obtains a maximum ofDRL
5exp(z2/L2) at z/Zb52z/L, e.g., a maximum ofDRL
52.82 atz5Zb for z52L. The physical interpretation o
Eqs. ~27! and ~30!–~32! for the local betatron radius be
comes ambiguous whenz2@L2, since the pulse intensity
becomes vanishingly small in these regions.

It is also insightful to define theglobal intensity-weighted
mean-squared radius for the entire pulse via

^^r 2&&5
*2`

` dz*0
`dr r 3uâu2

*2`
` dz*0

`dr r uâu2
. ~34!
e

-

at
,
f

This quantity is of relevance to a diagnostic that measu
the time-integrated pulse intensity profile. For a Gauss
axial profile,

E
2`

`

dzE
0

`

dr r uâu25S p

2 D 1/2

L
r 0

2

4
a0

2, ~35!

which indicates that the total pulse energy is constant, a

^^r 2&&5
r 0

2

2 F112
dr 0

r 0
DRG~z!G , ~36!

where

FIG. 4. Normalized localDRL(z,z), Eq. ~32!, and global
DRG(z), Eq. ~37!, RMS radius of the betatron oscillation vsz/ZR0

for Zb55pZR0 . ~a! showsDRL at the centerz50 ~solid curve!
and the frontz5L ~dashed curve! of the pulse;~b! showsDRL at
the centerz50 ~solid curve! and the backz52L ~dotted curve! of
the pulse; and~c! showsDRG .
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DRG5expS 2
z2

2Zb
2 D cos~kb0z! ~37!

is the normalized global intensity-weighted RMS betatr
radius. Hence, for the entire pulse, the betatron oscilla
damps via exp(2z2/2Zb

2). The normalized global RMS ra
dius of the betatron oscillationDRG(z), Eq. ~37!, is plotted
in Figs. 4~c! versusz/ZR0 for the parametersl051 mm, L
55 mm, andr 0510mm ~Zb55pZR0 andZR05310mm!.

B. Second-order dispersion

For the case of an axial Gaussian profile,b0(z)
5a0 exp(2z2/L2), the inverse Fourier transform to Eq.~23!
can be obtained while retaining terms in the expon
to order dk2/k0

2. Specifically, the approximationskb

.kb0(12dk/k01dk2/k0
2) and dk2z/k.dk2z/k0 are made

in the exponent of Eq.~23!. This indicatesâ5â01dâ,
whereâ0 is the matched pulse solution given by Eq.~18! and

dâ52a0

dr 0

r 0
S 12

2r 2

r 0
2 D ~11h1

2!21/4

3expF2
r 2

r 0
2

2
z1

2

L2

~12 ih1!

~11h1
2!

2
i

2
tan21 h12 ikb0zG ,

~38!

wherez15z1kb0z/k0 , h15z/ZD1 , and

ZD15
k0L2/2

~12bg0
2 12kb0 /k0!

.
~pL/l0!2ZR0

~31kp0
2 r 0

2/4!
~39!

is the dispersion length for the perturbed field. Equation~38!
can be interpreted as a matched first-order (m51,p50)
Laguerre-Gaussian mode, including the effects of seco
he
n

t

d-

order dispersion~see Appendix C!. Notice that the dispersion
length for the perturbationZD1 is shorter than that for the
matched solutionZD0 , i.e.,

ZD1
212ZD0

2154kb0 /k0
2L252ZR0 /Zb

2. ~40!

This is a result of the reduced group velocity of the pert
bation, bg1,bg0 , since, as before,dâ is a first-order
Laguerre-Gaussian mode. In particular, Eq.~39! can be writ-
ten asZD1.(k0L2/2)(12bg1

2 )21, wherebg1 is given by Eq.
~26!. The effective axial pulse length associated with t
perturbed field, Eq.~38!, is

Le15L~11z2/ZD1
2 !1/2. ~41!

The intensity profile, to first order indr 0 /r 0 , is given by
uâu25 Î 01d Î , whereÎ 05uâ0u2 is the matched pulse solutio
given by Eq.~21!, andd Î 5â0dâ* 1â0* dâ, i.e.,

FIG. 5. Normalized local RMS betatron amplitudeDRL1(z,z),
Eq. ~44!, vs z/ZR0 at the centerz50 ~solid curve!, the front z
5Le0(z) ~dashed curve!, and the backz52Le0(z) ~dotted curve!
of the pulse, forZb55pZR0 , ZD0546ZR0 , andZD1533ZR0 .
d Î .2
2a0

2L

Le0
1/2Le1

1/2

dr 0

r 0
S 12

2r 2

r 0
2 DexpF2

2r 2

r 0
2

2
z2

Le0
2

2
z1

2

Le1
2 GcosF kb0z1

h0z2

Le0
2

2
h1z1

2

Le1
2

2 1
2 tan21 h01 1

2 tan21 h1G , ~42!

whereh05z/ZD0 andh15z/ZD1 .
The local intensity-weighted mean-squared radius, as defined by Eq.~27!, is given by

^r 2&.
r 0

2

2 H 112
dr 0

r 0
DRL1~z,z!cosF kb0z1

h0z2

Le0
2

2
h1z1

2

Le1
2

2 1
2 tan21 h01 1

2 tan21 h1G J , ~43!
per-
where

DRL15S Le0

Le1
D 1/2

expF z2

Le0
2

2
L2

Le1
2 S z

L
1

z

Zb
D 2G ~44!

is the normalized amplitude of the local RMS radius of t
betatron oscillation, andLe0(z) andLe1(z) are given by Eqs.
~20! and ~41!, respectively. At the pulse centerz50, the
betatron oscillation damps via exp(2z2/Zb1

2 ), where

Zb15~k0Le1/2!ZR0 . ~45!

Notice that the damping distance is increased due to dis
sion, Zb15Zb0(11z2/ZD1

2 )1/2. The normalized local RMS
betatron amplitudeDRL1(z,z), Eq. ~44!, is plotted in Fig. 5
versusz/ZR0 at the pulse centerz50 ~solid curve!, as well
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as at the frontz5Le0(z) ~dashed curve!, and the backz
52Le0(z) ~dotted curve! of the pulse, for the parameter
l051 mm, L55 mm, r 0510mm, and lp515mm ~Zb
516ZR0 , ZD0546ZR0 , andZD1533ZR0!. Again, there is a
head-tail asymmetry. This asymmetry is complicated by
fact that the matched solution and the perturbed solution
characterized by different dispersion lengths,ZD0.ZD1 .
Asymptotically, for z2@ZD0

2 , the local RMS amplitude
DRL1(z) damps to a finite value. Specifically, at the pul
centerz50,

DRL1~0!→S ZD1

ZD0
D 1/2

expS 2
ZD1

2

Zb
2 D , ~46!

whereas at the front and back of the pulsez56Le0(z),

DRL1~6Le0!→S ZD1

ZD0
D 1/2

expF12S ZD1

Zb
6

ZD1

ZD0
D 2G .

~47!

For the parameters of Fig. 5,DRL1(0)→9.331023,
DRL1(Le0)→6.731024, and DRL1(2Le0)→0.33. As be-
fore, the physical interpretation of^r 2& becomes ambiguou
in the regionz2@Le0

2 , since the intensity in that region i
vanishingly small.

The global intensity-weighted mean-squared radius,
defined by Eq.~34!, including the effects of second-orde
dispersion is given by

^^r 2&&.
r 0

2

2 H 112
dr 0

r 0
DRG1~z!

3cosF kb0z
~113z2ZR0

2 /2Zb
4 !

~11z2ZR0
2 /Zb

4 !
1 1

2 tan21S zZR0

Zb
2 D G J ,

~48!

where

DRG15S 11
z2ZR0

2

Zb
4 D 21/4

expF 2
z2/2Zb

2

~11z2ZR0
2 /Zb

4 !
G ~49!

is the normalized amplitude of the global RMS betatron
cillation and the relationh12h052zZR0 /Zb

2 has been used
The normalized global RMS betatron amplitudeDRG1(z) is
plotted in Fig. 6 for the parametersZb55pZR0 ~solid
curve!, Zb510ZR0 ~dashed curve!, and Zb530ZR0 ~dotted
curve!.

V. NONLINEAR EFFECTS

The above theory assumeda2!1 andP/Pc!1, i.e., non-
linear effects were neglected. At high intensity and/or pow
nonlinear effects could play an important role in pulse pro
gation in channels. For example, intense laser pulses are
ject to various instabilities. Two important instabilities a
the self-modulation and the laser-hose instability@2,33,42–
46#. In the short pulse regime, these instabilities will under
exponential growth exp(Ne) with the number ofe-foldings
given by @2,46#
e
re

s

-

r,
-

ub-

o

Ne.1.3S P

Pc
kp

2z2
z

ZR
D 1/3

, ~50!

whereP/Pc.kp
2r 0

2a0
2/32. Note that the number ofe-foldings

scales with powerP, densityn0 , and pulse lengthL as Ne

;(Pn0
2L2)1/3. In terms of the betatron damping lengthZb ,

the number ofe-foldings at the end of the pulseuzu.L is
given by

Ne.6.5S P

Pc

L3

llp
2

z

Zb
D 1/3

. ~51!

It is insightful to estimate how much growth of the hos
modulation instability one might expect after propagating
distance equal to a betatron damping distancez.Zb . For a
plasma density ofn051017 cm23 and a laser pulse withl
51 mm andL55 mm ~a full width at half maximum inten-
sity duration of 20 fs!, the number ofe-foldings is Ne
.0.25 for P51 TW andNe.0.54 for P510 TW. Hence,
no appreciable growth of the instability is expected at t
density. As another example, the density range for which
laser-hose instability will be amplified by less than a fac
of 100 can be estimated. RequiringNe,4.6 afterz5Zb im-
plies n0,7.931018 cm23 for P51 TW and n0,2.5
31018 cm23 for P510 TW.

It is also important to note that the growth rate Eq.~50!
for the hose-modulation instability was obtained from
paraxial theory, i.e., the cross derivative term]2/]z]z in the
wave equation for the slowly varying amplitude Eq.~8! has
been neglected. The effects of the dispersive term]2/]z]z
become very important for ultrashort pulses. This paper
addressed the effects of this term in the limits of low pow
and low intensity. Theories of laser-plasma instabilities t
are valid for finite profile, ultrashort pulses that include t
effects of the dispersive term are currently lacking in t
literature. Based on the results obtained in this paper, h
ever, some dispersive effects on instabilities of ultrash
pulses can be estimated. When a matched, fundame
Gaussian pulse~characterized by the mode numbersm50
and p50 as discussed in Appendix C! goes unstable in a
plasma channel, it will generate higher-order modes, e.g.,
m>1,p50 mode in the case of self-modulation or them

FIG. 6. Normalized global RMS betatron amplitudeDRG1(z),
Eq. ~49!, vs z/ZR0 for the parametersZb55pZR0 ~solid curve!,
Zb510ZR0 ~dashed curve!, andZb530ZR0 ~dotted curve!.
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1090 PRE 59E. ESAREY AND W. P. LEEMANS
50,p>1 mode in the case of the laser hose. As noted
Appendix C, these modes propagate at different group
locities,

bg.12kp
2/2k0

222~2m1p11!/k0
2r 0

2. ~52!

Hence, the excited modes will propagate out of the region
the fundamental pulse when the group velocity slippage
tance becomes comparable to the pump pulse length,
zDbg.L, where Dbg5bg02bg and bg05bg(m50,p
50). This occurs after a propagation distance

z.k0LZR0 /~2m1p!, ~53!

i.e.,z;Zb for m;1 or p;1. Hence, the growth of the hose
modulation instability will become significantly altere
and/or suppressed after a distance on the order of the b
tron damping distance,z.Zb .

VI. DISCUSSION

The propagation characteristics of an ultrashort la
pulse in a preformed plasma channel have been analy
The plasma channel is assumed to be parabolic with a
sity profile of the formn(r )5n01Dnr2/r 0

2. The laser pulse
was assumed to haveP/Pc!1 anda0

2!1, such that nonlin-
ear effects~e.g., relativistic self-focusing! could be neglected
and the channel could be assumed unperturbed by the
pulse. Solutions to the wave equation beyond the para
approximation were derived that include finite pulse len
effects and group velocity dispersion. The laser field
given by ax5â exp(ik0z2iv0t)1c.c., where the field enve
lope â(r ,z,z) evolves via Eq.~8!. The field envelope is ob
tained by performing a single integral overdk, â
5(2p)21/2*2`

` ddk exp(idkz)âk , where âk is given by Eq.
~11! along with the definitions in Eqs.~12a!–~12d!. For com-
pleteness, the plasma source current is discussed in Ap
dix A, the evolution of ultrashort laser pulses in the abse
of a density channel (Dn50) is discussed in Appendix B
and a generalization of the results to include high-or
modes is discussed in Appendix C.

Since the condition for guiding a particulark5k01dk
mode with a constant spot sizer s5r 0 is given by Dn
5Dnc51/pr er 0

2 and is independent ofk, matched beam so
lutions exist wherein the entire pulse can propagate wit
nonevolving radial profile, i.e., a normalized intensity profi
uâu2;a0

2 exp(22r2/r0
2). Group velocity dispersion effect

were included in the matched beam solution to second o
in the parameterdk/k0 . This results in spreading of the puls
length, i.e.,uâu2;a0

2(L/Le0)exp(22z2/Le0
2 ), where L is the

initial pulse length, Le05L(11z2/ZD0
2 )1/2, and ZD0

5gg0
2 k0L2/2 is the dispersion length for a matched puls

Here,gg0
2 5(12bg0

2 )21 andvg05cbg0 is the group velocity
of a matched pulse in a channel, i.e.,gg0

2 5(v0/
vp)2(114/kp0

2 r 0
2)21. In terms of the group velocity disper

sion parameterb2 often quoted in fiber optics@47#, ZD0

5L2/2ub2uc2, whereb252vg
22dvg /dv andvg is the group

velocity. For a plasmab2.2(12bg0
2 )/v0c. Sinceb2,0,

the dispersion is anomalous.
A pulse which is not properly matched into a chann

undergoes betatron oscillations in its envelope. For exam
n
e-

f
s-
e.,

ta-

r
d.
n-

ser
al
h
s

en-
e

r

a

er

.

l
le,

if at the channel entrancer s(z50)5r 01dr 0 and drs /dz
50 with dr 0 /r 0!1, then the spot size associated with
givenk5k01dk mode undergoes betatron oscillations abo
the matched spot sizer 0 of the form r s5r 01dr 0 coskbz,
where kb52/ZR is the betatron wave number andZR

5kr0
2/2. A finite pulse lengthL leads to a spread in lase

wave numbersudku;1/L and, hence, a spread in betatro
wave numbers. This results in phase mixing and damping
the betatron oscillations. In particular, for a slight mismat
dr 0

2/r 0
2!1, the RMS radius of the pulse exhibits betatr

oscillations of the form given by Eqs.~30!–~32! and ~36!–
~37!. The global RMS betatron amplitude damps v
exp(2z2/2Zb

2), where Zb5(k0L/2)ZR05(k0r 0/2)2L is the
betatron damping distance.

An alternative interpretation for the laser envelope be
tron oscillations and their subsequent damping is the follo
ing. To lowest order indr 0 /r 0 , a mismatched laser pulse i
a channel is a superposition of two matched modes: a fun
mental Gaussian mode,â0 , and a first-order, axisymmetri
Laguerre-Gaussian mode,dâ, the amplitude of which is pro-
portional to dr 0 /r 0 . The relative axial wave-number shi
between the fundamental and higher-order mode is given
Dkz.22(2m1p)/k0r 0

252kb0 for m51 andp50, i.e., a
relative phase shift ofDu52kb0z. Hence, the first-order
correction to the field envelope oscillates relative to the fu
damental at the betatron wave number, i.e., via cos(kb0z).
Furthermore, the axial group velocity of the first-order mo
bg1.c(k01Dkz)/v0 is less than that of the fundamen
tal bg05ck0 /v0 by an amount bg02bg1.2Dkz /k0
.kb0 /k0 .

The amplitude of the betatron oscillation, as defined
the intensity-weighted RMS radius of the pulse, is det
mined by the interference between the two modes, i.e.,
pendent on the productâ0dâ. As the first-order mode slips
behind the fundamental, the relative contribution of the fir
order mode to the spot size decreases at the front (z.0) and
increases at the back (z,0) of the pulse. This results in a
asymmetry in the betatron oscillation, i.e., the apparent a
plitude initially decreases at the front and increases at
back of the pulse. As the slippage continues, the two mo
overlap less and less, resulting in an overall decrease in
betatron amplitude, i.e., damping. The characteristic dam
ing distance is determined by when the slippage dista
DLs5(bg02bg1)z becomes comparable to the pulse leng
i.e., DLs.L, which givesz.k0L/kb05Zb . In terms of the
axial pulse profileb0(z), the local RMS betatron amplitud
is proportional tob0(z1)/b0(z), wherez5z2bg0ct andz1
5z2bg1ct. For Gaussian axial profiles, this gives the dam
ing behavior indicated by Eqs.~30!–~32!.

The effects of second-order group velocity dispers
were also included in the analysis of mismatched propa
tion in a channel. It was found that the perturbed compon
of the radiation field, proportional todr 0 /r 0 , undergoes
enhanced dispersive spreading that is character
by the dispersion lengthZD15gg1

2 k0L2/2, where gg1
2

.(v0 /vp0)2(1112/kp0
2 r 0

2)21. The decrease in the dispe
sion length is due to a decrease in the group velocity ass
ated with the first-order mode of the perturbed field, i.e.,gg1

2

5(12bg1
2 )21.

Experimentally, for a long channelz.Zb , the high-order
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modes representing the envelope mismatch should be
served to emerge behind the fundamental Gaussian p
The first-order mode will become ‘‘well-separated’’ from th
fundamental when the slippage length exceeds the sum
the dispersively broadened pulse lengths, i.e.,DLs.Le0
1Le1 , which gives z/Zb.(Le01Le1)/L, where Le0,1
5L(11z/ZD0,1)

1/2 and ZD0,1 are the dispersion lengths
Since typicallyZb,ZD1,ZD0 , the modes should becom
well-separated forz.2Zb . To correctly determine the tem
poral intensity profile emerging from a long channel, corre
tions of orderdr 0

2/r 0
2 ~or higher! need to be retained in th

determination of the perturbed fielddâ, which can be ac-
complished by retaining higher-order terms in the expans
of Eqs. ~11!–~16!. In addition, experimentally realizabl
channel profiles can be ‘‘leaky’’ and less apt to guide hig
order modes@13,14,48#. This leakage of the higher-orde
modes constituting the envelope mismatch can lead to
enhanced damping of the betatron oscillation.

The damping of betatron oscillations in the pulse en
lope and the dispersive spreading of the pulse length
important for short pulses propagating in long channe
Consider al051 mm laser with a matched spot radius
r 0510mm and a Gaussian axial profile withL55 mm,
which corresponds to a full width at half maximum of th
intensity profile ofLFWHM5(2 ln 2)1/2 L55.9mm ~20 fs!.
The plasma channel is parabolic,n5n01Dnr2/r 0

2, with
Dn5Dnc51.131018 cm23 and n054.931018 cm23 (lp

515mm). The matched Rayleigh length isZR05pr 0
2 /l0

5310mm and the betatron wavelength islb52p/kb
5pZR05990mm. The betatron damping length isZb0
.(pL0 /l0)ZR055pZR050.49 cm, e.g., after z51 cm
(32ZR0) the global betatron amplitude would be damped
a factor exp(2z2/2Zb0

2 )50.12. Hence, for a long channe
z2@Zb0

2 , a mismatched pulse would emerge at essenti
the matched radiusr 0 . For these parameters, the dispers
length for a matched laser pulseZD0.(p2L2/l0

2)
3(11p2r 0

2/lp
2)21ZR0 is ZD0546ZR051.4 cm. Hence, after

propagating a distance ofz5100ZR053.1 cm, the pulse
length would spread to a lengthLe052.4L512mm ~a dura-
tion of 47 fs!.
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APPENDIX A: PLASMA SOURCE TERM

This appendix concerns corrections that may arise in
plasma source termS' due to the effects of a finite norma
ized electrostatic potentialf5eF/mec

2. In Coulomb gauge,
“•a50, the normalized transverse wave equation is giv
by

S“22
]2

]ct2Da'5S' , ~A1!

S'5kp0
2 n

n0
b'1

]

]ct
“'f, ~A2!
b-
se.

of

-

n

-

n

-
re
.

y

ly

.
.

e

n

where n is the plasma density,n0 is the ambient density
along the channel axis,kp0

2 54pn0e2/mec
2, b5v/c is the

normalized plasma fluid velocity, and (n/n0)b' is the nor-
malized transverse plasma current in the fluid approximat
Here,n andb are assumed to obey the relativistic cold flu
equations

~]/]ct1b•“ !u5]a/]ct1“f2b3~“3a!, ~A3!

]n/]ct1“•~nb!50, ~A4!

“

2f5kp0
2 ~n2ne!/n0 , ~A5!

whereu5gb, g5(12b2)21/2, andne(r ) is the equilibrium
plasma density, which is assumed to be a parabolic cha
of the formne5n01Dnr2/r 0

2.
Assuminga2!1, the perturbed fluid quantitiesdn, db,

anddf, to first order inuau, obey the equations

]db/]ct5]a/]ct1“df, ~A6!

]dn/]ct1“•~nedb!50, ~A7!

¹2df5kp0
2 dn/n0 . ~A8!

Combining Eqs.~A6!–~A8! yields

~]2/]ct21kp
2!“2df1~]a/]ct1“df!•“kp

250, ~A9!

where kp
25kp0

2 ne(r )/n05kp0
2 (11Dnr2/n0r 0

2). Assuminga
;exp(ik0z2iv0t) and df;exp(ik0z2iv0t), it is straightfor-
ward to find the leading-order contribution todb' and df,
i.e.,

db'.a'1 i“'df/k0 , ~A10!

df. i ~a'•“'kp
2!/k0

3. ~A11!

Similarly, the leading-order correction to the source ter
Eq. ~A2!, is given by

S'.kp
2a'2 ik0~12kp

2/k0
2!“'df

.kp
2a'1“'~a'•“'kp

2!/k0
2. ~A12!

For a parabolic density channel,“'kp
2;kp0

2 Dnc /n0r 0

;4/r 0
3, where Dnc51/pr er 0

2 is the critical channel depth
Hence, the correction to the source termdS'5S'2kp

2a'

scales as

dS'.“'~a'•“'kp
2!/k0

2;4a' /k0
2r 0

4;a' /ZR0
2 , ~A13!

whereZR05k0r 0
2/2 is the Rayleigh length.

The correction to the source termdS' can be neglected
provided that it is small in comparison to the terms retain
in the wave equation for the pulse envelopeâ, Eq.~8!, which
is written in terms of the independent variablesz5z
2bg0ct and z. Since the term]2â/]z2;â/ZR0

2 was ne-
glected in Eq.~8!, so can the termdS';â/ZR0

2 be neglected.
The conditions for validity of neglecting this term are di
cussed in the paragraph following Eq.~8!. Specifically, this
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requires ~i! u]2â/]z2u!2u]2â/]z]zu, which implies L
!2ZR0 , and ~ii ! u]2â/]z2u!(12bg0

2 )u]2â/]z2u, which im-
plies L2/r 0

2!(11kp0
2 r 0

2/4).

APPENDIX B: DIFFRACTING PULSES

In this appendix, the evolution of short laser pulses
uniform plasmas is analyzed. In the absence of a channel
evolution of the Fourier transform of the pulse envelopeâk is
described by Eq.~9! with Dn50, i.e.,

S“'
2 12ik

]

]zD âk5@kp0
2 2k0

2~bp0
2 21!1dk2~12bg0

2 !#âk ,

~B1!

wherek5k01dk and the]2/]z2 term has been neglected
the wave operator. The total transverse laser field isax
5â exp(ik0z2iv0t)1c.c., where the laser field envelope
given by

â~r ,z,z!5
1

A2p
E

2`

`

ddk exp~ idkz!âk~r ,z,k!. ~B2!

Here, z5z2bg0ct, where bg0
2 5bp0

22512vp0
2 /v0

224c2

/v0
2r 0

2, with the pulse central frequency and wave numb
satisfying v0

2/c22k0
25kp0

2 14/r 0
2. As is shown below,vg0

5cbg0 is the group velocity of the pulse centroid at the foc
point (z50).

Since Eq.~B1! has the form of a paraxial wave equatio
solutions forâk can readily be found, e.g., the lowest-ord
Gaussian mode is given by

âk5bk exp@ iu2~12 ia!r 2/r s
2#, ~B3!

where the quantitiesbk(k,z), u(k,z), a(k,z), and r s(k,z),
which represent the amplitude, phase shift, curvature,
spot size of the field ink space, respectively, satisfy Eq
~12a!–~12d!. In the absence of a channel,Dn50, Eqs.
~12a!–~12d! can be solved to describe a diffracting field.
particular, for the initial (z50) conditionsr s5r 0 , drs /dz
50, a50, u50, andbk5bk0 , the solutions to Eqs.~12a!–
~12d! are

a5z/ZR , ~B4!

bk5bk0r s /r 0 , ~B5!

r s5r 0~11a2!1/2, ~B6!

u5a2tan21 a2~dk2r 0
2/4!~12bg0

2 !a, ~B7!

whereZR5kr0
2/2 is the Rayleigh length associated with t

total wave numberk5k01dk, r 0 is the minimum spot size
at the focal point~assumed to be atz50!, and bk0 is
the initial dk spectrum of the laser pulse atz50. Note that
for an initial Gaussian axial pulse profile of the formb0
5a0 exp(2z2/L2), bk05a0(L/&)exp(2dk2L2/4). Further-
more, note that in the limit of a long laser beam, Eqs.~B4!–
~B7! reduce to the usual paraxial solutions whendk50.

It is convenient to writeâk in the form

âk5bk0 exp~ck!, ~B8!
he

r

l

d

where

ck52 1
2 ln~11a2!2

r 2/r 0
2

~11 ia!

1 i ~a2tan21 a!2 idk2r 0
2~12bg0

2 !
a

4
. ~B9!

Since udku;1/L!k0 , the inverse Fourier transform to Eq
~B8! can be found by expandingck(k01dk) aboutk0 , i.e.,

ck.c1c8dk1c9dk2/2, ~B10!

where c5ck(dk50), c85(dck /ddk)(dk50), and c9
5(d2ck /ddk2)(dk50). Specifically,

c52 1
2 ln~11a0

2!2
r 2/r 0

2

~11 ia0!
1 i ~a02tan21 a0!, ~B11!

c85
a0

k0
F a0

~11 ia0!
2

ir 2/r 0
2

~11 ia0!2G , ~B12!

c952
a0

k0
2 F ~3a012ia0

2!

~11 ia0!2
2

2ir 2/r 0
2

~11 ia0!3
1

i

2
k0

2r 0
2~12bg0

2 !G ,

~B13!

wherea05z/ZR0 and ZR05k0r 0
2/2. Solutions forâ(z) can

be found order by order in the parameterudku/k0;1/k0L.

1. Zeroth-order solution

The zeroth-order~paraxial! solution is given by

â05b0~z!exp~c!

5b0~z!
r 0

r s0
expF2~12 ia0!

r 2

r s0
2

1 i ~a02tan21 a0!G ,

~B14!

where r s05r 0(11a0
2)1/25r 0(11z2/ZR0

2 )1/2 is the zeroth-
order ~paraxial! laser spot size. Furthermore, note that t
effective axial wave number associated with the laser fiel
given bykz5k01]c i /]z, wherec i5Im(c), i.e.,

kz.k01
1

ZR0
F a0

2

~11a0
2!

1
~12a0!2

~11a0
2!2

r 2

r 0
2G . ~B15!

2. First-order solution

To first order,âk5bk0 exp(c1c8dk). The inverse trans-
form of this yields

â5b0~z2 ic8!exp~c!. ~B16!

For a Gaussian axial profile,b0(z)5a0 exp(2z2/L2), the
normalized laser pulse intensity profile associated with
first-order solution is

uâu2.a0
2

r 0
2

r s0
2

expF2
2r 2

r s0
2

2
2

L2
~z1c i8!2G , ~B17!
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plus corrections of orderu2c r8
2
/L2u;1/k0

2L2 ~second order in
the parameterudku/k0!. Here,c r8 andc i8 refer to the real and
imaginary parts ofc8, respectively, i.e.,

c r85
a0

2

k0~11a0
2!

F12
2r 2

r s0
2 G , ~B18!

c i852
a0

k0~11a0
2!

Fa0
21~12a0

2!
r 2

r s0
2 G . ~B19!

The local zL andglobal zG axial pulse centroids are de
fined by

zL5
*2`

` dz zuâu2

*2`
` dzuâu2

, ~B20!

zG5
*0

`dr r *2`
` dz zuâu2

*0
`dr r *2`

` dzuâu2
. ~B21!

The local pulse centroid is given byzL52c i8 . The axial
group velocity associated with the local centroidvL is de-
fined bydzL /dt5vL2vg0 , i.e.,

vL.vg0H 11
2

k0
2r 0

2 F ~3a0
21a0

4!

~11a0
2!2

1
~126a0

21a0
4!r 2

~11a0
2!3r 0

2 G J .

~B22!

In general, the local centroid velocityvL5vL(r ,z) is a func-
tion of both r and z. However,vL5vg0 at z50 and r 50.
Hence, the value ofvg05cbg0 given by bg0

2 512vp0
2 /v0

2

24c2/v0
2r 0

2 is the correct value of the group velocity of th
local pulse centroid at the focal point to first order indk/k0 .
As the pulse diffracts, the local centroid velocity slight
increases. Asymptotically, forz/ZR0@1 and r 50, vL

.vg0(112/k0
2r 0

2).12vp0
2 /2v0

2, which is the 1D value.
Inserting Eq.~B17! into Eq. ~B21!, the global centroid is

given by zG.a0/2k0 . The axial group velocity associate
with the global centroidvG , defined bydzG /dt5vG2vg0 ,
is given by

vG.vg0~111/k0
2r 0

2!.c~12vp0
2 /2v0

221/k0
2r 0

2!, ~B23!

plus corrections of order (k0
2r 0L)22 or higher. Hence, for the

entire pulse, the global centroid velocityvG , Eq. ~B23!, is
constant~independent ofz! and slightly higher (vg.vg0)
than the value of the local centroid velocity at the focal po
vL(0,0)5vg0 . The velocities of the local and global puls
centroids given by Eqs.~B22! and ~B23! have been con-
firmed by numerical solutions of the wave equation@41#.

3. Second-order solution

To second order, âk5bk0 exp(c1c8dk1c9dk2/2).
The inverse transform of this can be readily obtained fo
Gaussian axial profile,bk05(a0L/&)exp(2dk2L2/4), i.e.,

â5a0S 12
2c9

L2 D 21/2

expFc2
~z2 ic8!2/L2

~122c9/L2!
G . ~B24!
t

a

Note that the validity of the expansion given by Eq.~B10!
implies thatu2c9/L2u!1.

APPENDIX C: HIGHER-ORDER MODES

In this appendix, the results of Sec. II are generalized
include higher-order modes. In analogy with Eq.~9!, con-
sider the wave equation describing the evolution of
Fourier transform of the pulse envelopeâk ,

S“'
2 12ik

]

]zD âk5@kp
2~r !2k0

2~bp0
2 21!1dk2~12bg0

2 !#âk ,

~C1!

wherek5k01dk, the]2/]z2 term has been neglected in th
wave operator, and a parabolic density channel will be
sumedkp

25kp0
2 (11Dnr2/n0r 0

2). A general solution to Eq.
~C1! is a Laguerre-Gaussian mode, characterized by
mode numbersm andp, of the form

âk5bks
p/2Lm

p ~s!exp@ iu2~12 ia!s/21 ipf#, ~C2!

where s52r 2/r s
2, Lm

p is the generalized Laguerre polyno
mial, andf is the polar angular coordinate~axisymmetric
modes correspond top50!. By inserting Eq.~C2! into Eq.
~C1!, it can be shown that the functionsbk(z), r s(z), a(z),
andu(z) satisfy

bk5bk0r s /r 0 , ~C3!

a5~krs/2!]r s /]z, ~C4!

]2r s

]z2
5

4

k2r s
3 S 1 2

Dnrs
4

Dncr 0
4D , ~C5!

]u

]z
52

1

2k F 4

r s
2 ~2m1p11!

1kp0
2 2k0

2~bp0
2 21!1dk2~12bg0

2 !G , ~C6!

where k5k01dk, Dnc51/pr er 0
2 is the critical channel

depth, andbk0 is the initialdk spectrum of the laser pulse a
z50.

The quantitiesbk , a, andr s are independent of the mod
numbersm andp and identical to the previous results, Eq
~12a!–~12c!. Hence, the condition for a matched pulse~r s
5r 0 for Dn5Dnc! is the same for all modes. The quantityu,
however, does depend onm andp as well as on the choice o
bg0 (bg0bp051). For consistency, the previous choice f
bg05ck0 /v0 will be used, i.e., 12bg0

2 5vp0
2 /v0

2

14c2/v0
2r 0

2, such thatkp0
2 2k0

2(bp0
2 21)524/r 0

2. Note that
this choice forbg0 gives the correct axial group velocity fo
matched propagation (r s5r 0) of the fundamental (m5p
50) mode. For the higher-order modes, however, it can
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shown that the axial group velocity of a matched mode
given bybg , where

12bg
2.vp0

2 /v0
214~2m1p11!c2/v0

2r 0
2. ~C7!

The correct value for the axial group velocity is manifest
in the value of the effective axial wave-number shift~relative
to the fundamental!, Dkz.]u/]z, evaluated in the para
ial limit ( dk50) for a matched laser pulse (r s5r 0), i.e.,
bg.c(k01Dkz)/v0.bg0(11Dkz /k0), where Dkz

.22(2m1p)/k0r 0
2.

For propagation in a parabolic channel (Dn.0), the so-
lutions to Eqs.~C4!–~C6! with the initial ~at z50! condi-
tions a50, u50, ]r s /]z50, andr s5r i are given by

a52
1

2 S r i
2

r M
2

2
r M

2

r i
2 D sin~kbz!, ~C8!

r s
25

r i
2

2 F S 11
r M

4

r i
4 D 1S 12

r M
4

r i
4 D cos~kbz!G , ~C9!
ing

ing

or

s.

n

J.
en
el,

.
J.

.

e

,

s
u5F r M

2

r 0
2

2
dk2r M

2

4
~12bg0

2 !G z

ZRM

2~2m1p11!tan21F r M
2

r i
2

tanS z

ZRM
D G , ~C10!

where kb52/ZRM is the betatron wave number,ZRM
5krM

2 /2 is the matched Rayleigh length, andr M

5(r 0
4Dnc /Dn)1/4 is the matched spot size~r M5r 0 for Dn

5Dnc!. For a matched pulse,r s5r i5r M , a50, and u
52(2m1p)kbz/22dk2(12bg0

2 )z/2k.
For propagation in vacuum (Dn50), the solution to Eqs.

~C4!–~C6! for the initial (z50) conditionsr s5r 0 , drs /dz
50, a50, andu50 are given by

a5z/ZR , ~C11!

r s5r 0~11a2!1/2, ~C12!

u5a2~2m1p11!tan21 a2~dk2r 0
2/4!~12bg0

2 !a,
~C13!

where ZR5kr0
2/2 and r 0 is the minimum spot size at th

focal point ~assumed to be atz50!.
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